Vitamin D and its Metabolites in Animal Health

Heinrich Bachmann, Herbonis AG, Basel Switzerland

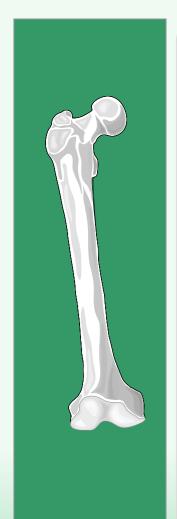
19. DERZSY NAPOK 2011

meat production

Growth, livability, and feed conversion of 1957 vs. 1991 broilers when fed typical 1957 and 1991 broiler diets.

Havenstein et al. Dept. of Poultry Science, North Carolina State University, USA

Breed	Diet	Weig	ght [g] Day 84	Feed Conv.	M[%]	TD [%] (1991diet)	TD [%] (1957diet)
1957	1957	508	1400	3.00	3.3	1.2	1.2
1991	1991	2132	4498	2.04	9.1	48.6	25.6


1957 Athens-Canadien Random breed (a typical 1957 breed)

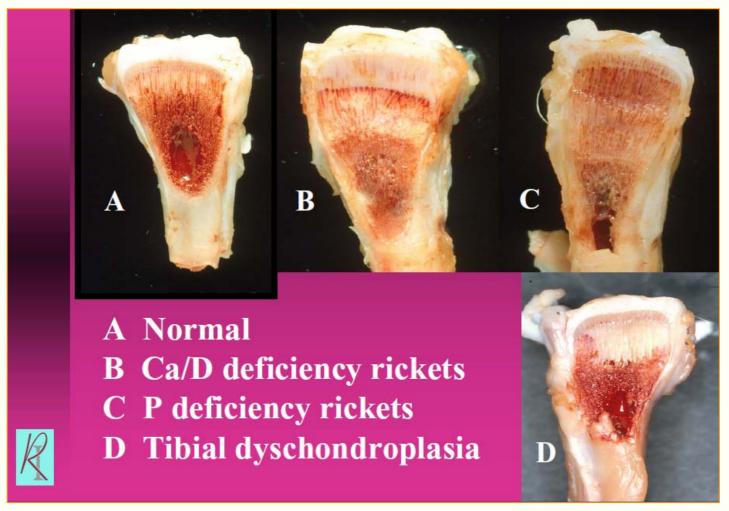
1991 Arbor Acres (a typical 1991 breed)

M Mortalty

TD Tibial Dyschondroplasia

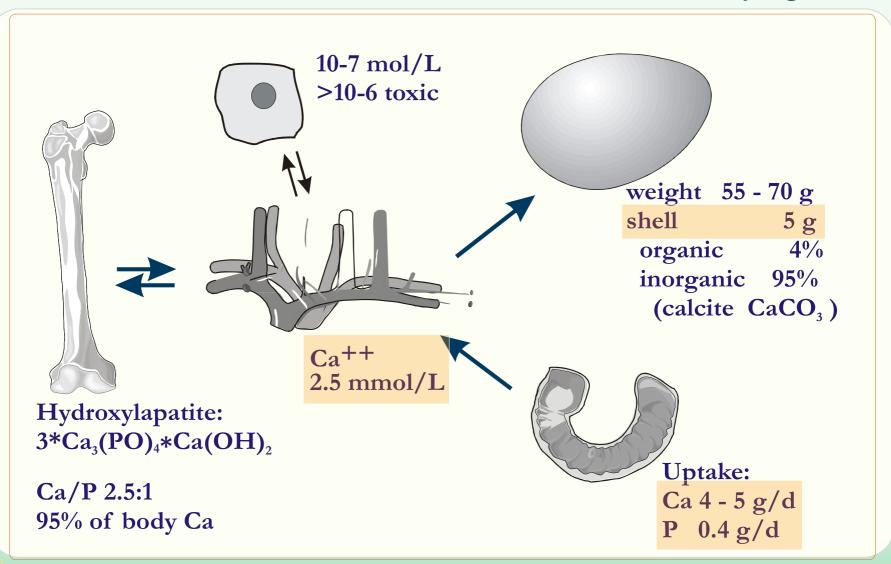
the bone

Calcium and its importance in bone quality


- Cortical and trabecular bone: Support function
- Medullar Bone: Mineral-pool with high turnover

Leg weaknesses

- different causes (genetics, feed, environment)
 - Bone growth disorders in young fast growing poultry, tibial dyschondroplasia as example
 - Osteoarthrosis (bone and joint disorderscaused by degenerative processes
 - Fractures because of osteoporosis in laying hens


leg problems in poultry rearing

Courtesy by Prof. C. Whitehead

calcium turnover in the laying hen

definitions

 R_1 R_2 H H $Vitamin D_3$; Cholecalciferol OH H $25(OH)D_3$, Calcidiol OH OH $1\alpha,25(OH)_2D_3$, Calcitriol OH $O-[Gly]_n$ Calcitriol-glycosides (n = 1 - 10)

Activity:

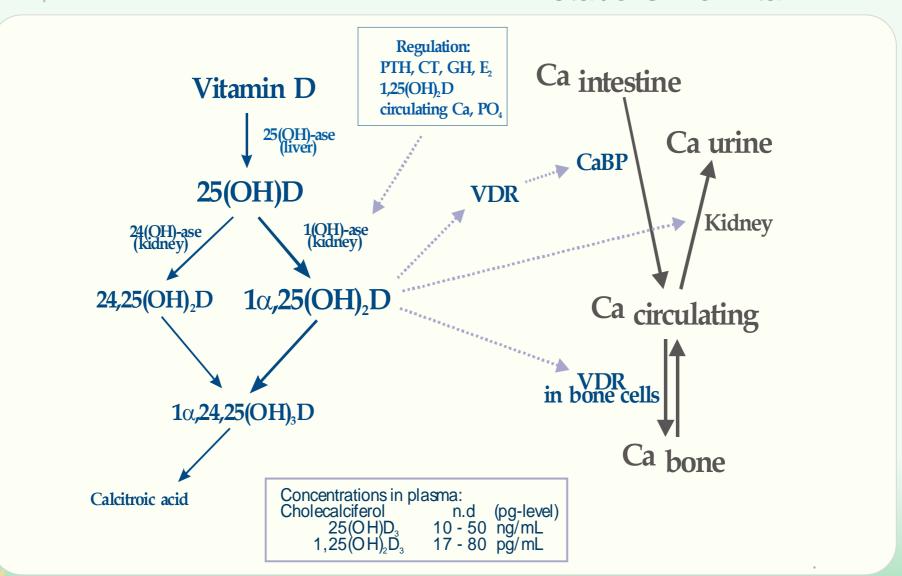
Cholecalciferol (Vitamin D₃) 25-Hydroxyvitamin D₃

biosassay)

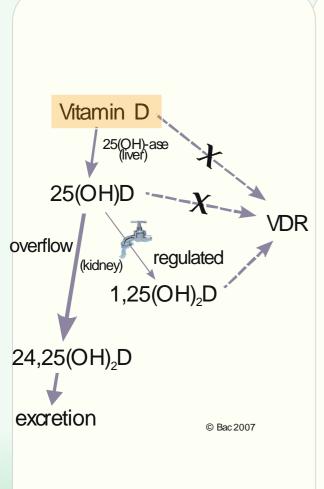
1,25-Dihydroxyvitamin D₃

biosassay)

Ergocalciferol (Vitamin D₂)

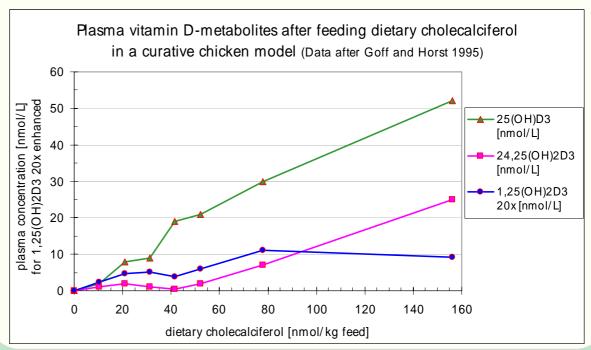

1 IU = 25 ng official mass – activity relation (2x more active, depending on

(5x more active, depending on

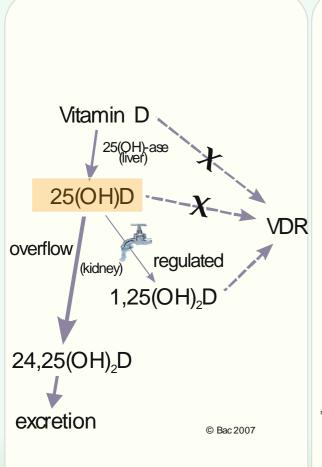

(10x less active in birds)

Herbonis

metabolism of vitamin D

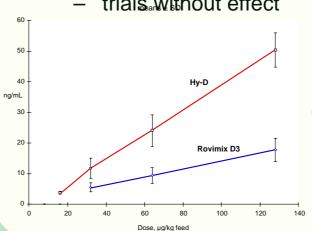


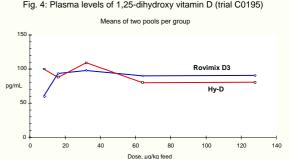
Vitamin D₃


Vitamin D₃

- prevents and cures rickets
- but not tibial dyschondroplasia

the storage form

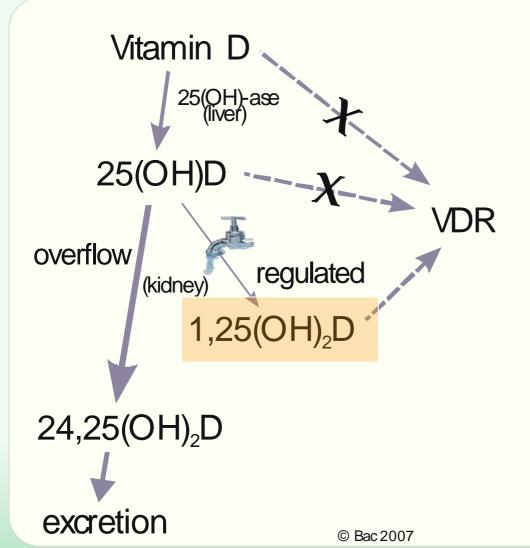



25-Hydroxyvitamin D₃ (storage form)

- prevents and cures rickets
- improves performance
- tibial dyschondroplasia only partially
- Published experiments in peer reviewed journals
 - 75μg/kg is equipotent to 2μg/kg 1,25(OH)₂D₃
 (lowers incidence from 64% to 10%)

Fig. 3: Plasma levels of 25-hydroxy vitamin D (trial C0195)

— trials without effect


1,25-Dihydroxyvitamin D₃ (synthetic Calcitriol)

most active VDM, strictly controlled formation genomic action through VD-Receptor in intestine non-genomic ("fast") action in muscle and other tissue

- Cures rickets
- Most active compound in curing and preventing TD
 - Edwards et al.
 10 μg/kg prevents TD
 - Whitehead et al.
 2 μg/kg lowers TD from 25% -> 0%
- Active in improving egg shell strength
- Active in layer fatigue and osteoporosis (Whitehead et al.)
 - ⇒ no product available for animal nutrition

the active form

Prevention of tibial dyschondroplasia or osteoporosis, Egg shell quality

Slow processes may not be recognized by the calcium homeostatic regulati25(OH)₂D₃, the active metabolite has a different quality of action

natural vitamin D sources

Vitamin D from natural sources:

Sparse, fish liver oil is one of the richest source, because vitamin D is produced under the influence of sunlight by zoo- and phyto-plankton, the basis of the marine food chain.

Others (found in the 1980ties):

Solanum glaucophyllum C

Cestrum diurnum

Nicotiana sp.

Nierembergia veichtii Solanum lycopersicum

Trisetum flavescens alfaalfa

most 10-50 times less traces

not in textbook: the natural alternative

Solanum glaucophyllum from the wild

cultivation

raw material

Solanum glaucophyllum

Wild forms and a cultivated variety, selected for high and uniform active content: Hervit® (non-GMO)

Active content: wild: VDM 0–20 ppm (as 1,25-Dihydroxyvitamin D₃)

cultivation: VDM 25-30 ppm

>90% in glycosidic bound form

<5% free 1,25-Dihydroxyvitamin D₃

 $<5\% 25(OH)D_3$; vitamin D_3

Inactive content: Primary plant metabolites,

flavonoids

Toxic components: Jain et al.: alkaloid Solasodine

⇒ Hervit is controlled for a low alkaloid content and pesticides, heavy metals, microbial purity

product characterization

Product characterization:

Active content: 1,25-dihydroxyvitamin D₃ specs; CoA

Inactive content: Weende analysis specs; CoA

Specific components: pesticide

residues by HPLC

heavy metals by AA

microbial contamination bacteriol.

alkaloids HPTLC,

HPLC/MS

others HPTLC

herbal active vitamin D

Panbonis – Herbal Vitamin D₃

Standardized, formulated product for adding to feed

Content 10 ppm (as 1,25-Dihydroxyvitamin D₃)

Product properties:

Light green powder, particle size 100-500 µm (92%)

Good miscibility with feed

Storage stability $(0/20/40 \,^{\circ}\text{C})$: 36mt >90%

Thermo stability at extruding, pelleting: >90%

Non-GMO product, controlled for heavy metals, pesticide residues and microbial contamination

Legal status: CH Registered as FA 'Herbal Vitamin D'

EU Notified as under Regulation EC767/2009 as SG standardized leaves

Asia (Taiwan, Thailand, Malaysia, Japan) as 'herbal FA'

SA Brazil, Argentina, Chile, Mexico as 'herbal FA'

Solbone-A-cws

A standardized, formulated extract with good cold water solubility

Content: 50 ppm (as 1,25-Dihydroxyvitamin D_3)

Application: via drinking water in poultry and swine rearing

Properties: Light brown powder with a malty taste

particle size 60-300 µm (90%)

Freely soluble in water to maximal 30% w/v

Storage stability: 0/20/40 °C: 24mt >90%

Thermo stability: 100°C >90%

Stability in water: 20°C (5 %), 3 days >90%

Thermo stability solution 1g/L 120°C/3 min

>80%

Registration: CH registration as FA in progress

EU registration as FA in preparation

Asia registered in Japan, Thailand others in progress

SA registered in Brazil

Biological effects

product characterization

herbal vitamin D_3 (1,25(OH)₂D₃-glycosides) - stable (storage, temperature) - water soluble (Solbone-Acws) in the Intestinal tract - 'slow release' by digestive enzymes - broader tolerance free active Vitamin D natural active VDM - fast onset of action resorption without overloading liver and kidneys

direct action on bones

- better Ca + P utilization

mineral-related conditions

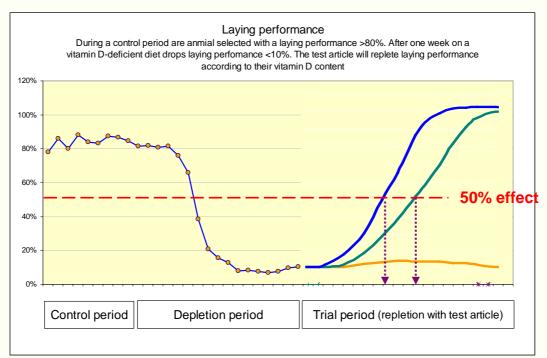
Poultry

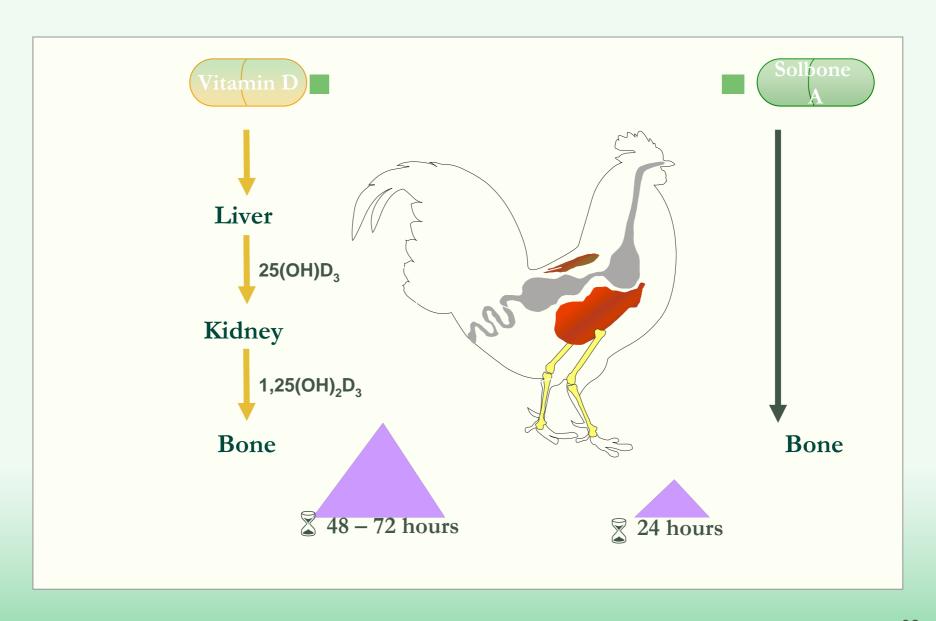
- leg weaknesses in fast growing broiler chickens
- eggshell quality and osteoporosis of old laying hens

Swine

- calcium-related problems at farrowing
 - lactating sow
 - piglet survival

Ruminants


- calcium-related problems during calving
 - milk fever
 - meat quality


Others pets, horses (bone growth, osteoporosis, kidney insufficiency)

effects: vitamin D activity

Bioassay for Vitamin D activity: Japanese quail egg shell assay

Principle: Egg-laying quails are given vitamin D-depleted diet until laying performance drops to <10 %. Animals are then given the test diet for 3 weeks (LMU Munich, Germany)

effects: leg weaknesses

Broiler trial: Preventing leg anomalies

Location: Roslin Institute, Edinburgh, Scotland, Whitehead C et al.

Title: Effects of vitamin D metabolites on bone

Objective: Compare effectiveness of different vitamin D metabolite

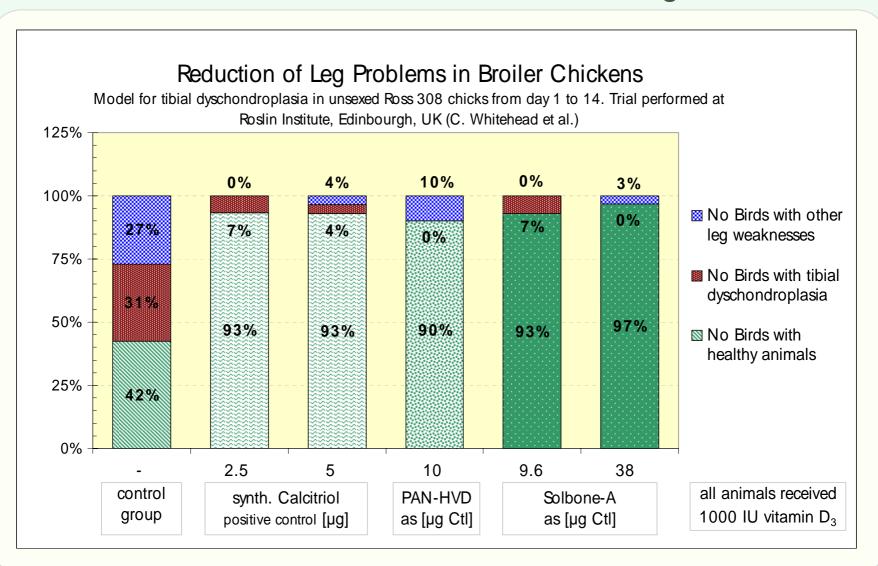
preparations on bone development

Procedure: 240 male day-old broilers (Ross 308). Basal (control) diet

was set on all-vegetable broiler starter diet containing 8 g

Ca, 6g available P and 1000 IU vitamin D/kg. Other diets

obtained with appropriate supplements.


Birds were fed on diets from one day old. At 14 days,

proximal tibias were dissected for determination of TD

incidence and severity and tibia breaking strength was

measured.

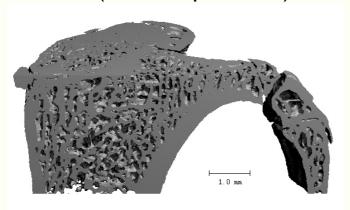
effects: leg weaknesses

phosphorous utilization

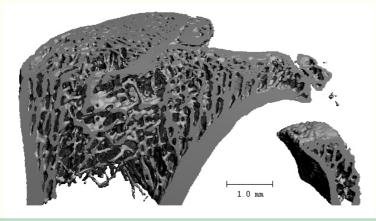
P and Ca balance trial in broiler chickens. Days 12-17 / 17-22

treatment	Ca %	P %	Ca %	P %
	digest	digest	excret	excret
Control normal (P _{tot} = 0.66%)	0.51 ^a	0.43 ^a	0.47 ^a	0.40 ^a
Control P_{red} ($P_{tot} = 0.50\%$)	0.37 ^b	0.47 ^b	0.46 ^a	0.22 ^b
P_{red} ($P_{tot} = 0.50\%$)+ Panbonis 75 g/ft	0.43 ^c	0.42 ^c	0.42 ^b	0.20 ^b

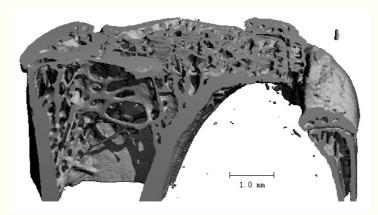
treatment	Ca _{ret}	P _{ret}	Pyt-P _{ret}	diff
	g/kg f	g/kg f	g/kg f	
Control normal (P _{tot} = 0.66%)	4.55 ^a	2.83 ^a	1.29 ^a	
Control P_{red} ($P_{tot} = 0.50\%$)	3.32 ^b	2.37 ^b	1.46 ^a	-
P_{red} ($P_{tot} = 0.50\%$)+ Panbonis 75 g/ft	3.87 ^c	2.62 ^c	1.52 ^b	11%

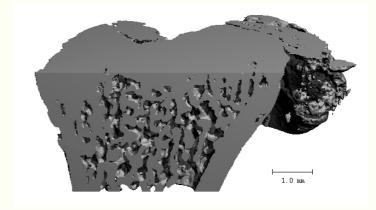

Different letters p<0.05

Same effect also published by Cheng et al. 1996


Other animal models

Herbal vitamin D₃ in a rat model for osteoporosis:


Normal (sham operated)


Fosamax

ovariectomized

Solbone

safety

Safety

Herbal Vitamin D₃' safety:

In broilers:

Recommended dose: on top of usual Vitamin D₃:

<2'000 IUD/kg: 0.2 to 0.5 g/kg feed >2'000 IUD/kg: 0.1 to 0.2 g/kg feed

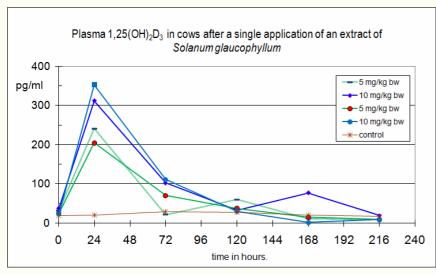
5 g/kg no adverse effect 12 g/kg adverse effect level

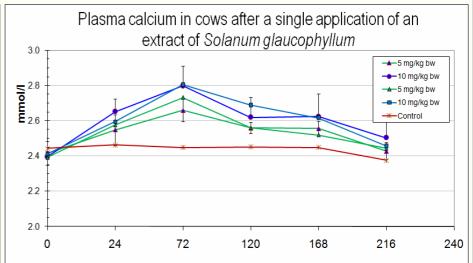
- after day 14: reduced weight gain in half of animals

- at day 25: hypercalcemia

blood calcium +38% animal weight –36% mortality 1.4 ⇒ 5.7%

- at day 38: recovery, normal blood calcium and


growth curve after change to normal feed


safety

Plasma kinetics after a single dose of an extract of Solanum glaucophyllum to cows

 $1,25(OH)_2D_3$

Ca

safety

	Biological actions			Molecular properties				Safety	
	VD activity	R	TD ¹⁾	OP ²⁾	Chem stab ⁶⁾	Lipo ³⁾	Tissue acc ⁴⁾	Half-life ⁵⁾	Tolerance ⁷⁾
Vitamin D ₃	full	Y	_	_	med	high	high	2 mt	20-50x
25(OH)D ₃	full	Y	_	-	med	med	med	2 wk	5-10x
1,25(OH) ₂ D ₃	full	Y	Y	Y	low	low	low	16 hr	5x
Herbal active VD	full	Y	Y	Y	high	low	low	16 hr	10-25x

- 1) TD: tibial dyschondroplasia
- 2) OP: osteoporosis
- 3) Lipophilicity: a measure for the fat-solubility is the opposite of water-solubility.
- 4) Tissue accumulation: the tendency of a lipophilic molecule to dissolve in fat-rich tissue and thus accumulates in the body.
- 5) Half-life: time measure by which half of the applied compound is cleared from the body
- 6) Chemical stability: determines the storage stability and reactivity with feed components and heat stability at feed processing
- 7) Tolerance: the factor at which toxicity starts. Based on recommended doses of 2500 IU/kg for VD₃, 69µg/kg for 25(OH)D₃, 5µg/kg 1,25(OH)₂D₃ and 250, resp. 100mg/kg feed for Panbonis.)

standardized leaf material

Herbal active Vitamin D₃

Active agent is1,25-dihydroxyvitamin D₃, the most active natural VDM ¹⁾ in man and animal with proven activity in:

Bone-related effects

Cures vitamin D-deficiency (rickets) faster

Prevents leg weakness (tibial dyschondroplasia)

Other benefits

Improves phosphorous absorption

Improves performance (1-8 %, weight gain and feed conversion)

Improves meat tenderness (in beef, data by Foote et al. 2004)

The present glycosidic form of the active vitamin D_3 shows a better safety profile than free 1,25-dihydroxyvitamin D_3 ,

The standardized and formulated product has a good stability (up to 3 years)

1) In glycosylated form, a naturally stabilized form

In conclusion, you have the choice of 3 different forms of vitamin D₃ each with it's merits:

Vitamin D ₃	cheap; covers normal conditions, rickets				
25 Hydroxyvitomin D	advantage in specific conditions:				
25-Hydroxyvitamin D ₃	performance, mineral supply, rickets				
	advantage in specific conditions:				
Herbal active vitamin D	calcium uptake, bone health, phosphorus				
	utilization, rickets				

Thank you

